cross-posted from: https://lemmy.zip/post/1293808
Archived version: https://archive.ph/fHjNq
Archived version: https://web.archive.org/web/20230810182753/https://www.bbc.co.uk/news/science-environment-66407099
I’m hoping it turns out to be “funk”.
Indeed. Funk can not only move, it can remove.
I love you’
Have you all not seen Interstellar? Obviously the fifth force of nature is love.
Wasn’t that the Fifth Element?
Negative. I am a meat popsicle.
Aziz! Light!
Muhl-tee pahsss!
Multipass!
What are the odds that muons are more sensitive to neutrino interaction and this is what the scientists are seeing? Muons are pretty massive, after all, and neutrinos are literally everywhere. Obligatory: “billions of neutrinos pass through you every second”.
Muons are leptons like neutrinos and their electron cousins, and we already know that electrons can be boosted by the occasional neutrino interaction. A free muon in a magnetic field has nowhere to be boosted to, so, coupled with a hypothetically higher chance of interacting with a neutrino, I’d expect something to happen when it does, though not exactly what.
I figure we don’t already use muons in neutrino detectors because they don’t last very long (about a second) before decaying, and the only way to get them to last longer is to accelerate them to a decent fraction of the speed of light. That way, from our reference frame they can last minutes or more. That’s going to be energy-hungry compared to the passive detectors we have.
i.e. the passive detectors which take advantage of the aforementioned electron / atom interaction.
Did we finally discover slood?
Is it this guy?
Here is an alternative Piped link(s): https://piped.video/geNMz0J9TEQ
Piped is a privacy-respecting open-source alternative frontend to YouTube.
I’m open-source, check me out at GitHub.
Probably the same force his shotty uses to force people back
From Wikipedia: this is only a 1-sigma result compared to theory using lattice calculations. It would have been 5.1-sigma if the calculation method had not been improved.
Many calculations in the standard model are mathematically intractable with current methods, so improving approximate solutions is not trivial and not surprising that we’ve found improvements.The 5th force of nature is the machine code.
Tangentially related but I can’t seem to find the answers and I have a couple questions that perhaps someone can answer:
- Do stars actually generate muons directly? From what I understand the muons on Earth are a result of cosmic rays colliding wtih particles in the atmosphere.
- If they do, how far do they travel before decaying? Even if they travel at relativistic speeds, they have a mean lifetime of 2.2 ns, so the math seems to say they don’t travel very far at all on average.
- Either way, are there any other sources of muons in the universe? I’m curious what the muon density distribution in the universe would look like.
What’s the other 4? Gravity… and… Light? Kinetic? Magnetic?
- Strong nuclear force: holds the nucleus of an atom together
- Weak nuclear force: responsible for radioactive decay
- Electromagnetic force: of charged particles
- Gravitational force: attractive force between objects with mass
Not all decays are weak-based, though, and not all weak phenomina are directly related to radioactivity. That’s just the only thing a layman has heard of where it’s relevant.
The strong force only holds atoms together through a sort of trickle-down force, too, but that one feels like splitting hairs.
The person I replied to wasn’t able to name the forces beyond gravity, so I think over-simplification and reduction to specific phenomena they would have heard of is appropriate.
Oh, absolutely. I was adding on for anyone else reading who might appreciate answer gravy. Sorry if it came across as critical of what you wrote, my bad.
Gotcha, no problem, I did take it as criticism of my comment but that was a reflex.
Reading it back I don’t blame you. It does come across as an attempt to argue.
Gravity, The weak force, Electromagnetic force, The strong nuclear force
They’re literally listed in the article
Well, the article currently lists them as: gravity, electromagnetism, the strong force and the weak force.
If you’re not familiar, you wouldn’t be able to guess that the last two are nuclear forces and in the context of a new force, that list is rather confusing.
The body of the article lists them, they just aren’t listed in the title.
If I remember there’s weak and strong nuclear force, then two others.
No, there’s two others, then the nuclear forces
I think there’s a nuclear force, then two others, then another nuclear force. But I could be wrong.
Maybe it’s nuclear forces all the way down
Yes, but the real nuclear forces were the friends we made along the way.
Someone’s trying to connect the dots on a grand unified theory.
The best ones are all untestable.
Gosh BBC, I was here all along.
Removed by mod
Removed by mod
Removed by mod
Removed by mod
Removed by mod