Please don’t. Use regex to find something that looks like an IP then build a real parser. This is madness, its’s extremely hard to read and a mistake is almost impossible to spot. Not to mention that it’s slow.
Just parse [0-9]{1,3}.[0-9]{1,3}.[0-9]{1,3}.[0-9]{1,3} using regex (for v4) and then have some code check that all the octets are valid (and store the IP as a u32).
True enough for database or dictionary storage, but a lot of times things get implemented in arrays where you still wind up with two copies of the same uint32.
Please don’t. Use regex to find something that looks like an IP then build a real parser. This is madness, its’s extremely hard to read and a mistake is almost impossible to spot. Not to mention that it’s slow.
Just parse [0-9]{1,3}.[0-9]{1,3}.[0-9]{1,3}.[0-9]{1,3} using regex (for v4) and then have some code check that all the octets are valid (and store the IP as a u32).
And dupe check. 0.0.0.0 and 000.000.000.000 may both be valid, but they resolve the same
Definitely, tho if you store it as a u32 that is fixed magically. Because 1.2.3.4 and 1.02.003.04 both map to the same number.
What I mean by storing it as a u32 is to convert it to a number, similar to how the IP gets sent over the wire, so for v4:
octet[3] | octet[2] << 8 | octet[1] << 16 | octet[0] << 24
or in more human terms:
(fourth octet) + (third octet * 256) + (second octet * 256^2) + (first octet * 256^3)
True enough for database or dictionary storage, but a lot of times things get implemented in arrays where you still wind up with two copies of the same uint32.
deleted by creator