• KazuchijouNo@lemy.lol
    link
    fedilink
    English
    arrow-up
    9
    ·
    2 months ago

    But being more massive means that due to inertia the ball will take just a tiny little wee bit longer to start moving no? So they end up falling at the same time.

    Also, are these Newtonian mechanics? How do they compare to relativity at the “bowling ball and feather” scale?

    Someone please correct me if I’m wrong. It’s been a while since I read anything physics-related.

    • qjkxbmwvz@startrek.website
      link
      fedilink
      English
      arrow-up
      5
      ·
      2 months ago

      The above is just referring to the fact that the standard “feather vs. bowling ball” question assumes the earth/moon/ground is immovable. In that case, Newton says they fall the same.

      The fact that the ground is not immovable is what’s being referenced — in this picture, things don’t “fall,” they are each accelerated towards each other.