There are many human drivers of fire, the first and foremost being, well you know, lighting a fire. And boy, do humans light a lot of fires.
Take for example, here is a map of active fires around the globe, right now:
First order human drivers of fire are things we actively or accidentally do to light a fire. Ignition is a fundamental for fire to happen, and humans cause WAY more ignition events than nature does. Things like a cook fire, burning brush or downed debris for management purposes, infrastructure like power lines or fueling stations, car accidents, lit cigarettes being thrown out etc… etc… The timing and frequency of these events directly influence the frequency of fires.
Second order drivers are things like vegetation management, home placing and construction, and other biophysical drivers. For example, introduction of invasive species like bromus tectorum, which burns very readily, represents more fine fuels in the environment. Yadayadayada more fires. Other things around vegetation management would fall into this category, such as the suppression of fire, or the psychical thinning of fuels in forests, or prescribed burns.
Thank you so much for sharing something that you are passionate about. It was awesome to hear about, and I hope you continue to share the knowledge you have with others like myself. 😁
No no no, I’m an et al, just no any of those particular et al. I focus on wildfire risk and have read much on the topic. I’ve read McCarty and many more when it comes to understanding wildfire and wildfire risk. Some of my research focuses on wildfire risk, and spatial features as they relate to wildfire risk, so drivers becomes pretty important when it comes to wildfire risk modeling. I have taken several courses through NASA on the matter even though I don’t focus on drivers directly.
This is the kind of thing I’m working on:
The nodes are features, the edges are weights. In this case I’m just looking at structure:structure risk.
I use geospatial science and data to document, analyze, and predict complexities of wildland and human-caused fire, from individual to global scales. I have a particular interest in fire emissions and modeling, regional food security, land-cover/land-use change, and the Arctic. As a mom, I am concerned with helping children and future generations have better lives.
Resume building, cover letters, aggregating open text responses, summarizing complex texts, and so on.
While the AI can’t be left alone to do these things and if you do it’ll be clear it’s AI but it can reduce the time to do them significantly.
I firmly believe this is like the age of the computer before it. Those who fail to become AI natives in knowledge work will become under employed or unemployed in 10-15 years.
So I encourage you to make an excuse to learn it and get good at it.
Probably just the totality of human influences on wildfires. This can include a wide range of activities and factors including climate change, forest preservation or cutting, changes in wild or domestic mammal herbivory, accidental ignition events, controlled burns, irrigation or diversion of streams, damming rivers, invasive species introductions, etc.
What does “human drivers of fire” mean?
Well I’m here so I guess I’ll answer.
There are many human drivers of fire, the first and foremost being, well you know, lighting a fire. And boy, do humans light a lot of fires.
Take for example, here is a map of active fires around the globe, right now:
First order human drivers of fire are things we actively or accidentally do to light a fire. Ignition is a fundamental for fire to happen, and humans cause WAY more ignition events than nature does. Things like a cook fire, burning brush or downed debris for management purposes, infrastructure like power lines or fueling stations, car accidents, lit cigarettes being thrown out etc… etc… The timing and frequency of these events directly influence the frequency of fires.
Second order drivers are things like vegetation management, home placing and construction, and other biophysical drivers. For example, introduction of invasive species like bromus tectorum, which burns very readily, represents more fine fuels in the environment. Yadayadayada more fires. Other things around vegetation management would fall into this category, such as the suppression of fire, or the psychical thinning of fuels in forests, or prescribed burns.
Thanks!
I’m definitely picturing Jedi clearing debris from the forest floors using the Force, now.
Thank you so much for sharing something that you are passionate about. It was awesome to hear about, and I hope you continue to share the knowledge you have with others like myself. 😁
Are… are you McCarty et al., TropicalDingdong?
edit: [email protected]
No no no, I’m an et al, just no any of those particular et al. I focus on wildfire risk and have read much on the topic. I’ve read McCarty and many more when it comes to understanding wildfire and wildfire risk. Some of my research focuses on wildfire risk, and spatial features as they relate to wildfire risk, so drivers becomes pretty important when it comes to wildfire risk modeling. I have taken several courses through NASA on the matter even though I don’t focus on drivers directly.
This is the kind of thing I’m working on:
The nodes are features, the edges are weights. In this case I’m just looking at structure:structure risk.
I’m sorry, but you obviously don’t understand wildfires. You should really try reading Tropical Dingdongs, Esq.
https://jmccartygeo.org/
This is my best guess without googling it or her.
The only acceptable use of generative AI is to get the shit posts out faster
I think it’s a great use, but not only.
Resume building, cover letters, aggregating open text responses, summarizing complex texts, and so on.
While the AI can’t be left alone to do these things and if you do it’ll be clear it’s AI but it can reduce the time to do them significantly.
I firmly believe this is like the age of the computer before it. Those who fail to become AI natives in knowledge work will become under employed or unemployed in 10-15 years.
So I encourage you to make an excuse to learn it and get good at it.
Probably just the totality of human influences on wildfires. This can include a wide range of activities and factors including climate change, forest preservation or cutting, changes in wild or domestic mammal herbivory, accidental ignition events, controlled burns, irrigation or diversion of streams, damming rivers, invasive species introductions, etc.
Those who are deemed “Lit” in academic language.
It’s my new band name, that’s for sure.
Something about climate change maybe?